七年级数学(上册)期末复习教案
第一单元
(第一章丰富的图形世界)
复习目标
1、 进一步认识生活中常见的柱体、锥体、球体,并能对它们进行一些简单的
分类。
2、 能了解直棱柱、棱锥、圆柱、圆锥等简单几何体的表面展开图,能根据展
开图想象、判断和制作几何模型。
3、 能描绘出立体图形的三视图,并能根据三视图判断立体图形的形状。
4、 了解截面,能想象截面的形状。
5、 经历几何体的展开、折叠、切截等活动,激发好奇心、积累数学活动经验,形成和发展空间观念。
复习内容
一.基础知识填空
1、 图形是由点、线、面构成的。
2、 在棱柱中,任何相邻两个面的交线都叫做棱,相邻两个侧面的交线叫做侧棱,棱柱的所有侧棱长都相等,棱柱的上下底面的形状相同,侧面的形状都是长方形。
3、 用一个平面去截一个几何体,截出的面叫做截面。
4、 我们把从正面看到的物体的图形叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图。
5、 圆上A、B两点之间的部分叫做弧,由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形,圆可以分割成若干个扇形。
6、 圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形。
二.典型例题
例题1:如图,甲的图形经折叠后能否形成乙图的棱柱?如果能形成,回答:
(1)这个棱柱有几个侧面?侧面个数与底面边数有什么关系?
(2)哪些面的形状与大小一定完全相同?如果不能形成,简要说明理由。
分析与解:按顺序将上、下两个五边形折叠到所在长方形同侧,然后对着五边形的边依次折下去,就能形成右边的五棱柱。
(1)这个棱柱共有5个侧面,侧面个数与底面边数相同。
(2)五棱柱的上、下两个底面一定完全相同,其侧面都是长方形,但不一定完全相同。
注意:从展开图折叠成棱柱,得到的图形是唯一的,而把棱柱展开成平面图形,得到的展开图不是唯一的。
例题2:将正方体的表面沿某些棱剪开,能否展开成如下图所示的图形?
分析与解:解答此类问题要有一定的空间想象能力,也要掌握一些技巧。(2)中有五个小正方形连成一条线,正方体表面不可能展开成这种图形。(7)中有七个小正方形,这就更不可能了。一般来说,有四个小正方形连成一条线,这条“线”的两侧各有一个小正方形,都可以折成一个正方体。因此,正方体表面可以展开成(1)、(3)所示的图形。发展空间想象能力或用手折叠可知,正方体表面也可以展开成(5)、(6)所示的图形,但不能展开成(4)所示的图形。即(2)、(4)、(7)不可能,其余都可能。
例题3:请你设计一种方法,用平面去截正方体使得截口是三边相等的三角形。
分析与解:在正方体相邻的三个棱上各取一点,使这点到这三个棱的交点距离相等,连结这三个点得到三条连结线,沿这三条连结线用平面去截,所得的截口是三边相等的三角形。见下图
注意:做此类题目时,应先充分想象一下,然后操作,以保
证正确性。
例题4:如图,是由几个小立方块搭成的几何体的甲、乙两个几何体的俯视图,小正方形中的数字表示在该位置上小立方块的个数,请画出它们的主视图与左视图。
分析与解:本题可根据俯视图确定主视图和左视图的列数,然后再根据数字确定每列方块的个数。
注意:从俯视图画主视图和左视图时,应从左到右找每列个数最多的作为该排的个数。
例题5:如图,是由几个一样的小正方体搭成的几何体的三视图,请在俯视图中的小正方形中填上该位置上的小立方体的块数。
分析与解:由主视图可知,俯视图第2行第1列的正方形中有1个小立方体,同
理可知俯视图右上角的正方形中有1个小立方体;由左视图可知,俯视图第2列中的两个正方形中都有两个小立方体。
2021-07-09 14:57
2021-07-08 14:39
2021-07-08 14:39
2021-07-08 14:27
2021-07-08 14:26
2021-07-08 14:25
2021-07-07 15:33
2021-07-07 15:32
2021-07-07 15:31
2021-07-07 15:08
2021-07-07 15:06
2021-07-06 14:23
2021-07-06 14:22
2021-07-06 14:21