四、达标练习:
1.过抛物线 的焦点作直线交抛物线于 , 两点,如果 ,那么 =( )
(A)10 (B)8 (C)6 (D)4
2.已知 为抛物线 上一动点, 为抛物线的焦点,定点 ,则 的最小值为( )
(A)3 (B)4 (C)5 (D)6
3.过抛物线 焦点 的直线 它交于 、 两点,则弦 的中点的轨迹方程是 ______
4.定长为 的线段 的端点 、 在抛物线 上移动,求 中点 到 轴距离的最小值,并求出此时 中点 的坐标.
参考答案:1. B 2. B 3. 4. , M到 轴距离的最小值为 .
五、小结 :抛物线的离心率、焦点、顶点、对称轴、准线、中心等.
六、课后作业:
1.根据下列条件,求抛物线的方程,并画出草图.
(1)顶点在原点,对称轴是x轴,顶点到焦点的距离等于8.
(2)顶点在原点,焦点在y轴上,且过P(4,2)点.
(3)顶点在原点,焦点在y轴上,其上点P(m,-3)到焦点距离为5.
2.过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在准线上的射影是A2、B2,则∠A2FB2等于 .
3.抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y轴垂直的弦长为16,求抛物线方程.
4.以椭圆 的右焦点,F为焦点,以坐标原点为顶点作抛物线,求抛物线截椭圆在准线所得的弦长.
5.有一抛物线型拱桥,当水面距拱顶4米时,水面宽40米,当水面下降1米时,水面宽是多少米?
习题答案:
1.(1)y2=±32x (2)x2=8y (3)x2=-8y
2.90° 3.x2=±16 y 4. 5. 米
七、板书设计(略)
2021-07-09 14:57
2021-07-08 14:39
2021-07-08 14:39
2021-07-08 14:27
2021-07-08 14:26
2021-07-08 14:25
2021-07-07 15:33
2021-07-07 15:32
2021-07-07 15:31
2021-07-07 15:08
2021-07-07 15:06
2021-07-06 14:23
2021-07-06 14:22
2021-07-06 14:21