(二)对数的运算性质
如果,且,,,那么:
○1 ·+;
○2 -;
○3 .
注意:换底公式(,且;,且;).
利用换底公式推导下面的结论
(1);(2).
(二)对数函数
1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).
注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:, 都不是对数函数,而只能称其为对数型函数.
○2 对数函数对底数的限制:,且.
2、对数函数的性质:
a>1 0(三)幂函数
1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.
2、幂函数性质归纳.
(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);
(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;
(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.
例题:
1. 已知a>0,a0,函数y=ax与y=loga(-x)的图象只能是 ( )
2.计算: ① ;②= ;= ;③ =
3.函数y=log(2x2-3x+1)的递减区间为
4.若函数在区间上的最大值是最小值的3倍,则a=
5.已知,(1)求的定义域(2)求使的的取值范围
第三章 函数的应用
一、方程的根与函数的零点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
○1 (代数法)求方程的实数根;
○2 (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
5.函数的模型
2021-07-09 14:57
2021-07-08 14:39
2021-07-08 14:39
2021-07-08 14:27
2021-07-08 14:26
2021-07-08 14:25
2021-07-07 15:33
2021-07-07 15:32
2021-07-07 15:31
2021-07-07 15:08
2021-07-07 15:06
2021-07-06 14:23
2021-07-06 14:22
2021-07-06 14:21