主页 > 教育培训 > 中小学教育 > 正文

高一数学必修1知识点总结(4)

[作者:杨叫伴]
2013-01-23 15:59

  例题:

  1.求下列函数的定义域:

  ⑴ ⑵

  2.设函数的定义域为,则函数的定义域为_ _

  3.若函数的定义域为,则函数的定义域是

  4.函数 ,若,则=

  5.求下列函数的值域:

  ⑴ ⑵

  (3) (4)

  6.已知函数,求函数,的解析式

  7.已知函数满足,则= 。

  8.设是R上的奇函数,且当时,,则当时=

  在R上的解析式为

  9.求下列函数的单调区间:

  ⑴ ⑵ ⑶

  10.判断函数的单调性并证明你的结论.

  11.设函数判断它的奇偶性并且求证:.

  第二章 基本初等函数

  一、指数函数

  (一)指数与指数幂的运算

  1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*.

  * 负数没有偶次方根;0的任何次方根都是0,记作。

  当是奇数时,,当是偶数时,

  2.分数指数幂

  正数的分数指数幂的意义,规定:

  * 0的正分数指数幂等于0,0的负分数指数幂没有意义

  3.实数指数幂的运算性质

  (1)· ;

  (2) ;

  (3) .

  (二)指数函数及其性质

  1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.

  注意:指数函数的底数的取值范围,底数不能是负数、零和1.

  2、指数函数的图象和性质

  a>1 0

  注意:利用函数的单调性,结合图象还可以看出:

  (1)在[a,b]上,值域是或;

  (2)若,则;取遍所有正数当且仅当;

  (3)对于指数函数,总有;

  二、对数函数

  (一)对数

  1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(- 底数,- 真数,- 对数式)

  说明:○1 注意底数的限制,且;

  ○2 ;

  ○3 注意对数的书写格式.

  两个重要对数:

  ○1 常用对数:以10为底的对数;

  ○2 自然对数:以无理数为底的对数的对数.

  * 指数式与对数式的互化

  幂值 真数= N= b底数 指数 对数

猜你喜欢

编辑推荐

相关内容

推荐阅读

加载中...
没有更多了
X