有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.
(1)在如图所示的直角坐标系中,求出该抛物线的解析式;
(2)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.
1)设这个抛物线的解析式为f(x)=ax^2+bx+c
由图可知f(0)=0,f(x)=f(-x)
所以c=0,ax^2+bx+c=a^2-bx+c
由ax^2+bx+c=a^2-bx+c可得b=0
所以f(x)=ax^2
由已知可得,-f(10)+f(5)=3,即-100a+25a=-75a=3
解得a=-3/75,f(x)=-3/75x^2
综上 在如图所示的坐标系中求抛物线的解析式为y=-3/75x^2
(2)当x=5时,y=-1,即从警戒线到拱桥顶的距离为1米
从警戒线能到拱桥顶所需时间为 1/0.2=5(小时)
2021-07-09 14:57
2021-07-08 14:39
2021-07-08 14:39
2021-07-08 14:27
2021-07-08 14:26
2021-07-08 14:25
2021-07-07 15:33
2021-07-07 15:32
2021-07-07 15:31
2021-07-07 15:08
2021-07-07 15:06
2021-07-06 14:23
2021-07-06 14:22
2021-07-06 14:21